જો $3$ કક્ષાવાળા ચોરસ શ્રેણિક $A$, $B$ અને $C$ આપેલ છે કે જેથી $A = \left[ {\begin{array}{*{20}{c}} x&0&1 \\ 0&y&0 \\ 0&0&z \end{array}} \right]$ અને $\left| B \right| = 36$, $\left| C \right| = 4$, $\left( {x,y,z \in N} \right)$ અને $\left| {ABC} \right| = 1152$ તો $x + y + z$ ની ન્યૂનતમ કિમંત મેળવો.
$6$
$8$
$10$
$12$
ધારો કે $\lambda, \mu \in {R}$. જો સમીકરણ સંહતિ
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2$
$97 x+155 y-189 z=\mu$ ને અસંખ્ય ઉકેલો હોય, તો $\mu+2 \lambda=$..........
સુરેખ સમીકરણ સંહતિ $3 x-2 y-k z=10$ ; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ સુસંગત ન હોય તો
નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
જો $A \ne O$ અને $B \ne O$ એ $n × n$ કક્ષાવાળા શ્રેણિક હોય અને $AB = O $ તો . . .