જો $A \ne O$ અને $B \ne O$ એ $n × n$ કક્ષાવાળા શ્રેણિક હોય અને $AB = O $ તો . . .
$Det(A) = 0$ અથવા $Det(B) = 0$
$Det(A) = 0$ અને $Det(B) = 0$
$Det(A) = $ $Det(B) \ne 0$
${A^{ - 1}} = {B^{ - 1}}$
જો $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ તો આપલે પૈકી ક્યો સંબંધ સાચો છે .
વિધાન $1$ :$3$ કક્ષાવાળા વિંસમિત શ્રેણિકનો નિશ્રાયક શૂન્ય હોય છે.
વિધાન $2$: કોઇપણ શ્રેણિક $A$ માટે $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ અને $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ જયાં $\det \left( A \right) = A$ નો નિશ્રાયક.
$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$ = . . . .
જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
જો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$ નું એક બીજ $ 5$ હોય , તો બાકીના બે બીજ મેળવો.