જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.
$0$
$1$
$\sqrt3 $
$2$
સમીકરણ સંહતી $-k x+3 y-14 z=25$ ; $-15 x+4 y-k z=3$ ; $-4 x+y+3 z=4$ એ ગણ ............ માં દરેક $k$ માટે સુસંગત છે.
જો $a > 0$ અને વિવેચક $a{x^2} + 2bx + c < 0 $ છે, તો $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ = . . .
$m$ ની કેટલી કિમંતો માટે રેખાઓ $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ ઓ સંગામી થાય.
$\theta \in (0,\pi)$ ની કેટલી કિમંત માટે રેખીય સમીકરણો $x + 3y + 7z = 0$ ; $-x + 4y + 7z = 0$ ; $ (sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ ને શૂન્યતર ઉકેલ ધરાવે .
જો સમીકરણ સંહતિ
$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $
$ x+(\cos \alpha) y+(\sin \alpha) z=0 $
$ x+(\sin \alpha) y-(\cos \alpha) z=0$
ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.