If $a_i^2 + b_i^2 + c_i^2 = 1,\,i = 1,2,3$ and $a_ia_j + b_ib_j +c_ic_j = 0$ $\left( {i \ne j,i,j = 1,2,3} \right)$ then the value of determinant $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ is
$1/2$
$0$
$2$
$1$
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$is
Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .
If the system of equations, $a^2 x - ay = 1 - a$ & $bx + (3 - 2b) y = 3 + a$ possess a unique solution $x = 1, y = 1$ then :
Evaluate the determinants : $\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
If $\omega $ be a complex cube root of unity, then $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $