The values of $a$ and $b$, for which the system of equations $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ has no solution, are:
If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is
If $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ then $K = $
The value of the determinant$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$is