If $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$
$\equiv a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ then $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ has the value equal to
$n!$
$(n + 1) !$
$(n - 1)!$
none
Let the coefficient of $x^{\mathrm{r}}$ in the expansion of $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots \ldots+(\mathrm{x}+2)^{\mathrm{n}-1}$ be $\alpha_{\mathrm{r}}$. If $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, then the value of $\beta^2+\gamma^2$ equals..................
The value of $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ is
The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to
If $S_n =$$\sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and $T_n =$$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $ then $\frac{{{T_n}}}{{{S_n}}}$ is equal to
If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $