The value of $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ is
${2^{4n - 2}} + {( - 1)^n}{2^{2n - 1}}$
${2^{4n - 2}} + {2^{2n - 1}}$
${2^{2n - 1}} + {( - 1)^n}\,{2^{4n - 2}}$
None of these
Co-efficient of $\alpha ^t$ in the expansion of,
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
where $\alpha \ne - q$ and $p \ne q$ is :
In the expansion of ${(1 + x)^{50}},$ the sum of the coefficient of odd powers of $x$ is
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
If the sum of the coefficients in the expansion of ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ vanishes, then the value of $\alpha $ is
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ equals