यदि $\left| {\,a\,{{\sin }^2}\theta + b\sin \theta \cos \theta + c\,{{\cos }^2}\theta - \frac{1}{2}(a + c)\,} \right|\, \le \frac{1}{2}k,$ तब ${k^2}$ बराबर है

  • A

    ${b^2} + {(a - c)^2}$

  • B

    ${a^2} + {(b - c)^2}$

  • C

    ${c^2} + {(a - b)^2}$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $\sin A,\cos A$ तथा $\tan A$ गुणोत्तर श्रेणी में हों, तब ${\cos ^3}A + {\cos ^2}A$ का मान है  

निम्नलिखित प्रत्येक प्रश्न में $\sin \frac{x}{2}, \cos \frac{x}{2}$ तथा $\tan \frac{x}{2},$ ज्ञात कीजिए

$\tan x=-\frac{4}{3}, x$ द्वितीय चतुर्थांश में है

यदि $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, तो ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $

निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)

$\frac{11}{16}$

निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)

$\frac{7 \pi}{6}$