If $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ the direction of cosines of the vector $\overrightarrow A $ are

  • A
    $\frac{2}{{\sqrt {45} }},\frac{4}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{ - \,{\rm{5}}}}{{\sqrt {{\rm{45}}} }}$
  • B
    $\frac{1}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{3}}}{{\sqrt {{\rm{45}}} }}$
  • C
    $\frac{4}{{\sqrt {45} }},\,0\,{\rm{and}}\,\frac{{\rm{4}}}{{\sqrt {45} }}$
  • D
    $\frac{3}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{5}}}{{\sqrt {{\rm{45}}} }}$

Similar Questions

Explain resolution of vector in two dimension. Explain resolution of vector in its perpendicular components.

The magnitude of pairs of displacement vectors are given. Which pair of displacement  vectors cannot be added to give a resultant vector of magnitude $13\, cm$?

Given vector $\overrightarrow A = 2\hat i + 3\hat j, $ the angle between $\overrightarrow A $and $y-$axis is

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously${\overrightarrow F _1} = - 4\hat i - 5\hat j + 5\hat k$, ${\overrightarrow F _2} = 5\hat i + 8\hat j + 6\hat k$, ${\overrightarrow F _3} = - 3\hat i + 4\hat j - 7\hat k$ and ${\overrightarrow F _4} = 2\hat i - 3\hat j - 2\hat k$ then the particle will move

Explain the resolution of vector in three dimension.