Explain the resolution of vector in three dimension.
$\alpha, \beta$ and $\gamma$ are the angles between $\overrightarrow{\mathrm{A}}$ and the $x, y$ and $z$-axes, respectively. So that,
$\mathrm{A}_{x}=\mathrm{A} \cos \alpha$
$\mathrm{A}_{y}=\mathrm{A} \sin \beta$
$\mathrm{A}_{z}=\mathrm{A} \cos \gamma$
In general, we have
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}+\mathrm{A}_{z} \hat{k}$
The magnitude of vector $\overrightarrow{\mathrm{A}}$ is
$|\overrightarrow{\mathrm{A}}|=\mathrm{A}=\sqrt{\mathrm{A}_{x}^{2}+\mathrm{A}_{y}^{2}+\mathrm{A}_{z}^{2}} \quad \ldots$
A position vector $\vec{r}$ can be expressed as,
$\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$
where, $x, y$ and $z$ are the components of $\vec{r}$ along $x, y, z$-axes, respectively.
Magnitude of $\vec{r}=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \quad \ldots$
The angles which a vector $\hat i + \hat j + \sqrt 2 \,\hat k$ makes with $X, Y$ and $Z$ axes respectively are
A person pushes a box kept on a horizontal surface with force of $100\,N$ . In unit vector notation force $\vec F$ can be expressed as ?
For the given vector $\vec A =3\hat i -4\hat j+10\hat k$ , the ratio of magnitude of its component on the $x-y$ plane and the component on $z-$ axis is
A displacement vector of magnitude $4$ makes an angle $30^{\circ}$ with the $x$-axis. Its rectangular components in $x-y$ plane are .........