दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
$\frac{1}{{36}}$
$\frac{1}{6}$
$\frac{5}{6}$
इनमें से कोई नहीं
एक व्यक्ति के $20$ साल तक जिन्दा रहने की प्रायिकता $\frac{3}{5}$ तथा उसकी पत्नी के $20$ साल तक जिन्दा रहने की प्रायिकता $\frac{2}{3}$ है तो इस बात की प्रायिकता कि उनमें से कम से कम एक जिन्दा ($20$ साल तक) रहे, होगी
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ या $B$ ) का मान ज्ञात कीजिए।
यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
तीन घटनाओं $A$, $B$ तथा $C$ के लिए
$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$
$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$
$=P(C$ अथवा $A$ में से केबल एक घटित होती है
$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)
$=\frac{1}{16}$ है,
तो प्रायिकता कि कम से कम एक घटना घटित हो, है: