If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then

  • [IIT 1989]
  • A

    $E$ and ${F^c}$ (the complement of the event $F$) are independent

  • B

    ${E^c}$ and ${F^c}$ are independent

  • C

    $P\,\left( {\frac{E}{F}} \right) + P\,\left( {\frac{{{E^c}}}{{{F^c}}}} \right) = 1$

  • D

    All of the above

Similar Questions

Let $A$ and $B$ be events for which $P(A) = x$, $P(B) = y,$$P(A \cap B) = z,$ then $P(\bar A \cap B)$ equals

Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$,  $ P ( B )=0.4$,  $P ( A \cap B )=0.8$

Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?

If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is

  • [AIEEE 2002]

If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $