If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is

  • A

    ${\pi \over 6}$

  • B

    ${\pi \over 4}$

  • C

    ${\sin ^{ - 1}}\left( {{2 \over \pi }} \right)$

  • D

    ${\cos ^{ - 1}}\left( {{2 \over \pi }} \right)$

Similar Questions

If $f(x)$ satisfies the conditions of Rolle’s theorem in $[1,\,2]$ and $f(x)$ is continuous in $[1,\,2]$ then $\int_1^2 {f'(x)dx} $ is equal to

If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$  . .

  • [JEE MAIN 2014]

If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals

Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -

lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$  at the point $x = \frac {1}{2},$ then $2b+ c$ equals

  • [JEE MAIN 2015]