જો $f$ એ યુગ્મ વિધેય છે કે અંતરાલ$(-5, 5)$ માં વ્યાખ્યાયિત હોય , તો $ x$ ની ચાર કિમતો મેળવો કે જે સમીકરણ $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ નું સમાધાન કરે.
$\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 ,\; - 3 + \sqrt 5 ,\;3 - \sqrt 5 ,\;3 + \sqrt 5 $
જો $x$ એ શૂન્યતર સંમેય સંખ્યા છે અને $y$ એ અસંમેય સંખ્યા છે , તો $xy$ મેળવો.
નીચેનામાંથી ક્યુ સાચુ છે ?
જો વિધેય $g(x)$ એ $[-1, 1]$ મા વ્યાખિયાયિત છે અને સમબાજુ ત્રિકોણના બે શિરોબિંદુઓ $(0, 0)$ અને $(x, g(x))$ તથા તેનુ ક્ષેત્રફળ $\frac{\sqrt 3}{4}$ હોય તો $g(x)$ =
વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.