यदि ${e^x} = y + \sqrt {1 + {y^2}} $, तब $y =$
$\frac{{{e^x} + {e^{ - x}}}}{2}$
$\frac{{{e^x} - {e^{ - x}}}}{2}$
${e^x} + {e^{ - x}}$
${e^x} - {e^{ - x}}$
किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$
मान लें कि $x \in R$ के लिए $R$ सभी वास्तविक संख्याओं का समुच्चय है और $f(x)=\sin ^{10} x\left(\cos ^8 x+\right.$ $\left.\cos ^4 x+\cos ^2 x+1\right)$. मान लें कि $S=\left\{\lambda \in R \mid\right.$ में एक बिंदु $c \in(0,2 \pi)$ है जिसके लिए $\left.f^{\prime}(c)=\lambda f(c)\right\}$. तब
सभी $x, y \in N$ के लिए $f(x+y)=f(x) \cdot f(y)$ को संतुष्ट करता हुआ $f$ एक ऐसा फलन है कि $f(1)=3$ एवं $\sum_{x=1}^{n} f(x)=120$ तो $n$ का मान ज्ञात कीजिए।
फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है