किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$
$49$
$50$
$48$
$51$
फलन $f(x) = \frac{{x + 2}}{{|x + 2|}}$ का परिसर (रेंज) है
माना $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ अन्तराल $[0, 1]$ में परिभाषित है। $f(x)$ के अन्तराल $[-1, 1]$ में विषम प्रसार $(odd\, extensions)$ है
समुच्चय
$A -\left\{ x \in N : x ^2-10 x +9 \leq 0\right\}$ से समुच्चय
$B =\left\{ n ^2: n \in N \right\}$ में ऐसे फलनों $f$, जिनके लिए
$f ( x ) \leq( x -3)^2+1, x \in A$ है, की संख्या है $........$
यदि फलन $f( x )=\frac{\cos ^{-1} \sqrt{ x ^{2}- x +1}}{\sqrt{\sin ^{-1}\left(\frac{2 x -1}{2}\right)}}$ का प्रान्त, अन्तराल $(\alpha, \beta]$ है, तो $\alpha+\beta$ बराबर है -
यदि $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. तब $\alpha $ का वह मान, जिसके लिए $f(f(x)) = x$ होगा