यदि $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. तब $\alpha $ का वह मान, जिसके लिए $f(f(x)) = x$ होगा
$\sqrt 2 $
$ - \sqrt 2 $
$1$
$-1$
इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
माना फलन $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\lceil\mathrm{x}\rceil-\mathrm{x}}}$ जहाँ $\lceil\mathrm{x}\rceil$ न्यूनतम पूर्णांक $\geq x$ है, के प्रांत तथा परिसर क्रमशः समुच्चय $A$ तथा $B$ है। तो कथनों
$(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ तथा
$(\mathrm{S} 2): \mathrm{A} \cup \mathrm{B}=(1, \infty)$ में
माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________.
माना $f: R \rightarrow R$ एक फलन है, जो $f(x)=\frac{2 e^{2 x}}{e^{2 x}+e}$ तब $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots . .+f\left(\frac{99}{100}\right)$ बराबर होगा।
माना $f(n)=\left[\frac{1}{3}+\frac{3 n}{100}\right] n$, जहाँ $[n]$ एक महत्तम पूणांक, जो $n$ से छोटा अथवा बराबर है, तो $\sum_{ n =1}^{56} f(u)$ बराबर है