यादि $f(x) = \cos (\log x)$, तब $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ का मान है
$-2$
$-1$
$1/2$
इनमे से कोई नहीं
यदि $\phi (x) = {a^x}$, तब ${\{ \phi (p)\} ^3}$ बराबर है
यदि $f:R \to R$; $f(x + y) = f(x) + f(y)$, को संतुष्ट करता है; सभी $x,\;y \in R$ के लिए तथा $f(1) = 7$, तब $\sum\limits_{r = 1}^n {f(r)} $ का मान है
सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रद्त मापांक फलन $f: R \rightarrow R$, न तो एकेकी है और न आच्छादक है, जहाँ $|x|$ बराबर $x$, यदि $x$ धन या शून्य है तथा $|x|$ बराबर $-x$, यदि $x$ रुण है।
माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________.
सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: N \rightarrow N$ एकैकी है किंतु आच्छादक नहीं है।