If $A$ and $B$ are two points on the line $3x + 4y + 15 = 0$ such that $OA = OB = 9$ units, then the area of the triangle $OAB$ is

  • A

    $18 sq.$ units

  • B

    $18\sqrt 2 sq.$units

  • C

    18/$\sqrt 2 sq.$ units

  • D

    None of these

Similar Questions

The line $2x + 3y = 12$ meets the $x$-axis at $A$ and $y$-axis at $B$. The line through $(5, 5)$ perpendicular to $AB$ meets the $x$- axis , $y$ axis and the $AB$ at $C,\,D$ and $E$ respectively. If $O$ is the origin of coordinates, then the area of $OCEB$ is

  • [IIT 1976]

In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to

If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is

lf a line $L$ is perpendicular to the line $5x - y\,= 1$ , and the area of the triangle formed by the line $L$ and the coordinate axes is $5$, then the distance of line $L$ from the line $x + 5y\, = 0$ is

  • [JEE MAIN 2014]

A variable straight line passes through the points of intersection of the lines, $x + 2y = 1$ and $2x - y = 1$ and meets the co-ordinate axes in $A\,\, \&\,\, B$ . The locus of the middle point of $AB$ is :