જો $\sec 4\theta - \sec 2\theta = 2$, તો $\theta $ નું વ્યાપક મૂલ્ય મેળવો.
$(2n + 1)\frac{\pi }{4}$
$(2n + 1)\frac{\pi }{{10}}$
$n\pi + \frac{\pi }{2}$or $\frac{{n\pi }}{5} + \frac{\pi }{{10}}$
એકપણ નહીં.
જો $0 < \theta < 2\pi $ આપેલ હોય તો સમીકરણ $\tan \theta + \sec \theta = \sqrt 3 ,$ ના ઉકેલની સંખ્યા મેળવો.
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય
જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$