If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
$(2n + 1)\frac{\pi }{4}$
$(2n + 1)\frac{\pi }{{10}}$
$n\pi + \frac{\pi }{2}$or $\frac{{n\pi }}{5} + \frac{\pi }{{10}}$
None of these
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$
If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ is
If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)