If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
$(2n + 1)\frac{\pi }{4}$
$(2n + 1)\frac{\pi }{{10}}$
$n\pi + \frac{\pi }{2}$or $\frac{{n\pi }}{5} + \frac{\pi }{{10}}$
None of these
The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is
If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is
Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3 + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are