જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, તો $\sin \left( {\theta + \frac{\pi }{4}} \right) = . . . .$
$\frac{1}{{\sqrt 2 }}$
$\frac{1}{2}$
$\frac{1}{{2\sqrt 2 }}$
$\frac{{\sqrt 3 }}{2}$
સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.
સમીકરણ $2\sqrt 3 \cos \theta = \tan \theta $ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ એ સમીકરણ $t ^{2}-9 t +8=0,$ નું સમાધાન કરે, તો $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ નું મૂલ્ય .......... થાય.
જો અંતરાલ $[0,2 \pi]$ માં સમીકરણો $2 \sin ^{2} \theta-\cos 2 \theta=0$ અને $2 \cos ^{2} \theta+3 \sin \theta=0$ ના સામાન્ય ઉકેલોનો સરવાળો $k \pi$ હોય તો $k$ ની કિમંત મેળવો.
$'p'$ ની પૂર્ણાક કિમતોની સંખ્યા કેટલી મળે કે જેથી સમીકરણ $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ નો ઉકેલ શક્ય થાય