Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
The equation can be written as
$\sin 6 x+\sin 2 x-\sin 4 x=0$
or $2 \sin 4 x \cos 2 x-\sin 4 x=0$
i.e. $\quad \sin 4 x(2 \cos 2 x-1)=0$
Therefore $\sin 4 x=0 \quad$ or $\cos 2 x=\frac{1}{2}$
i.e. $\sin 4 x=0$ or $\cos 2 x=\cos \frac{\pi}{3}$
Hence $\quad 4 x=n \pi$ or $2 x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
i.e. $x=\frac{n \pi}{4}$ or $x=n \pi \pm \frac{\pi}{6},$ where $n \in Z$
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are
Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is
If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is