Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The equation can be written as

$\sin 6 x+\sin 2 x-\sin 4 x=0$

or $2 \sin 4 x \cos 2 x-\sin 4 x=0$

i.e. $\quad \sin 4 x(2 \cos 2 x-1)=0$

Therefore $\sin 4 x=0 \quad$ or $\cos 2 x=\frac{1}{2}$

i.e. $\sin 4 x=0$ or $\cos 2 x=\cos \frac{\pi}{3}$

Hence $\quad 4 x=n \pi$ or $2 x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

i.e. $x=\frac{n \pi}{4}$ or $x=n \pi \pm \frac{\pi}{6},$ where $n \in Z$

Similar Questions

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -

The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is

In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides $P Q, Q R$ and $R P$ at $N, L$ and $M$ respectively, such that the lengths of $P N, Q L$ and $R M$ are consecutive even integers. Then possible length$(s)$ of the side$(s)$ of the triangle is (are)

$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$

  • [IIT 2013]