If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
$x = \frac{\pi }{6}(4n + 1)$or $x = \frac{\pi }{2}(4n - 1)$
$x = \frac{\pi }{6}(4n - 1)$or $x = \frac{\pi }{2}(4n - 1)$
$x = \frac{\pi }{6}(4n + 1)$or $x = \frac{\pi }{2}(4n + 1)$
None of these
Find the general solution of the equation $\cos 4 x=\cos 2 x$
The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha - 7\,{\sin ^2}\,\alpha + 7\,\sin \,\alpha = 2$ , is
Let $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then
The number of solution of the equation $\tan x + \sec x = 2\cos x$ lying in the interval $(0,2\pi )$ is
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$