If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is
$2n\pi - \frac{\pi }{4} \pm \,\,\alpha $
$2n\pi + \frac{\pi }{4} \pm \alpha $
$n\pi - \frac{\pi }{4} \pm \alpha $
$n\pi + \frac{\pi }{4} \pm \alpha $
Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is
Number of solution$(s)$ of the equation $\sin 2\theta + \cos 2\theta = - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$ is-
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $
The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$
If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )