If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is

  • A

    $2n\pi - \frac{\pi }{4} \pm \,\,\alpha $

  • B

    $2n\pi + \frac{\pi }{4} \pm \alpha $

  • C

    $n\pi - \frac{\pi }{4} \pm \alpha $

  • D

    $n\pi + \frac{\pi }{4} \pm \alpha $

Similar Questions

Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is

Number of solution$(s)$ of the equation $\sin 2\theta  + \cos 2\theta  =  - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$ is-

$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $

The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$

If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is 
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )