If $A + B + C = \pi $ and $\cos A = \cos B\,\cos C,$ then $\tan B\,\,\tan C$ is equal to
$\frac{1}{2}$
$2$
$1$
$ - \frac{1}{2}$
The value of $6({\sin ^6}\theta + {\cos ^6}\theta ) - 9({\sin ^4}\theta + {\cos ^4}\theta ) + 4$ is
Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$
Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.
Which of the following is correct
If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is