If $A + B + C = \pi $ and $\cos A = \cos B\,\cos C,$ then $\tan B\,\,\tan C$ is equal to

  • A

    $\frac{1}{2}$

  • B

    $2$

  • C

    $1$

  • D

    $ - \frac{1}{2}$

Similar Questions

The value of $6({\sin ^6}\theta + {\cos ^6}\theta ) - 9({\sin ^4}\theta + {\cos ^4}\theta ) + 4$ is

Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$

Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.

Which of the following is correct

If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is