If $\frac{{3\pi }}{4} < \alpha < \pi ,$ then $\sqrt {{\rm{cose}}{{\rm{c}}^2}\alpha + 2\cot \alpha } $ is equal to

  • A

    $1 + \cot \alpha $

  • B

    $1 - \cot \alpha $

  • C

    $ - 1 - \cot \alpha $

  • D

    $ - 1 + \cot \alpha $

Similar Questions

If $A = 130^\circ $ and $x = \sin A + \cos A,$ then

$\cot x - \tan x = $

$\sin \left( {\frac{\pi }{{10}}} \right)\sin \left( {\frac{{3\pi }}{{10}}} \right) = $

If $5\tan \theta = 4,$ then $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $

Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.