If $(1 + \sin A)(1 + \sin B)(1 + \sin C)$$ = (1 - \sin A)(1 - \sin B)(1 - \sin C),$ then each side is equal to
$ \pm \sin A\sin B\sin C$
$ \pm \cos A\cos B\cos C$
$ \pm \sin A\cos B\cos C$
$ \pm \cos A\sin B\sin C$
If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be
If ${\rm{cosec }}A + \cot A = \frac{{11}}{2},$ then $\tan A = $
Convert $6$ radians into degree measure.
In a right angled triangle the hypotenuse is $2 \sqrt 2$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are
The radius of the circle whose arc of length $15\,cm$ makes an angle of $3/4$ radian at the centre is .....$cm$