If $(1 + \sin A)(1 + \sin B)(1 + \sin C)$$ = (1 - \sin A)(1 - \sin B)(1 - \sin C),$ then each side is equal to
$ \pm \sin A\sin B\sin C$
$ \pm \cos A\cos B\cos C$
$ \pm \sin A\cos B\cos C$
$ \pm \cos A\sin B\sin C$
If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant $II$
The equation ${\sin ^2}\theta = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ is possible if
$\cos 15^\circ = $
A wheel makes ${360^\circ }$ revolutions in one minute. Through how many radians does it turn in one second?