If $x = \sec \,\phi - \tan \phi ,y = {\rm{cosec}}\phi + \cot \phi ,$ then

  • A

    $x = \frac{{y + 1}}{{y - 1}}$

  • B

    $x = \frac{{y - 1}}{{y + 1}}$

  • C

    $y = \frac{{1 - x}}{{1 + x}}$

  • D

    None of these

Similar Questions

If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $

If $\cos A = \frac{{\sqrt 3 }}{2},$ then $\tan 3A = $

If $\tan \,(A - B) = 1,\,\,\,\sec \,(A + B) = \frac{2}{{\sqrt 3 }},$ then the smallest positive value of $B$ is

Prove that:   

$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$

Find the value of $\tan \frac{13 \pi}{12}$