If $x = \sec \,\phi - \tan \phi ,y = {\rm{cosec}}\phi + \cot \phi ,$ then
$x = \frac{{y + 1}}{{y - 1}}$
$x = \frac{{y - 1}}{{y + 1}}$
$y = \frac{{1 - x}}{{1 + x}}$
None of these
Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.
If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m - 1) = $
If the arcs of the same length in two circles $S_1$ and $S_2$ subtend angles $75^o $ and $120^o $ respectively at the centre. The ratio $\frac{{{S_1}}}{{{S_2}}}$ is equal to
If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is
If $\frac{\sin ^4 x}{2}+\frac{\cos ^4 x}{3}=\frac{1}{5},$ then
$(A)$ $\tan ^2 x=\frac{2}{3}$ $(B)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{1}{125}$
$(C)$ $\tan ^2 x=\frac{1}{3}$ $(D)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{2}{125}$