If $\tan \,(A - B) = 1,\,\,\,\sec \,(A + B) = \frac{2}{{\sqrt 3 }},$ then the smallest positive value of $B$ is

  • A

    $\frac{{25}}{{24}}\pi $

  • B

    $\frac{{19}}{{24}}\pi $

  • C

    $\frac{{13}}{{24}}\pi $

  • D

    $\frac{{11}}{{24}}\pi $

Similar Questions

If $5\tan \theta = 4,$ then $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $

If $x = \sec \theta + \tan \theta ,$ then $x + \frac{1}{x} = $

If $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ then $cos\theta_1 + cos\theta_2 + cos\theta_3=$

If $\cot x=-\frac{5}{12}, x$ lies in second quadrant, find the values of other five trigonometric functions.

If $\cos A = \frac{{\sqrt 3 }}{2},$ then $\tan 3A = $