Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left| {\begin{array}{*{20}{c}}
  {\cos \theta }&{ - \sin \theta } \\ 
  {\sin \theta }&{\cos \theta } 
\end{array}} \right|$

$ = (\cos \theta )(\cos \theta ) - ( - \sin \theta )(\sin \theta )$

$ = {\cos ^2}\theta  + {\sin ^2}\theta $

$ = 1$

Similar Questions

The solutions of the equation $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ are

For a real number $\alpha$, if the system

$\left[\begin{array}{ccc}1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^2=$

  • [IIT 2017]

If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is

  • [IIT 1979]

If $a \ne 6,b,c$ satisfy $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$then $abc = $

Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

has a non-trivial solution, then the value of $\theta$ is :

  • [JEE MAIN 2021]