Find values of ${x},$ if $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$
$\Rightarrow 10-12=5 x-6 x$
$\Rightarrow-2=-x$
$\Rightarrow x=2$
If ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , then the value of determinant $\left| {\begin{array}{*{20}{c}}
{{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\
1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\
{{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}}
\end{array}} \right|$
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then
The system of equations $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ has no solution, if $\alpha $ is
The set of all values of $\lambda$ for which the system of linear $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,$$\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ has a non-trivial solution
If $A \ne O$ and $B \ne O$ are $ n × n$ matrix such that $AB = O,$ then