$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ એ . . . વડે વિભાજ્ય નથી .
$x$
$x^3$
$14+x^2$
$x^5$
સમીકરણની સંહતિ $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$તો $x$ ની કિમત મેળવો.
જેના માટે સમીકરણ સંહતિ
$ x+y+z=4, $
$ 2 x+5 y+5 z=17, $
$ x+2 y+\mathrm{m} z=\mathrm{n}$
ને અસંખ્ય ઉકલો હોય, તેવી $m, n$ ની કિંમતો .......... સમીક૨ણ નું સમાધાન કરે છે.
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|=$
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .