ધારો કે $A (1, \alpha)$, $B (\alpha, 0)$ અને $C (0, \alpha)$ શિરોબિંદુઆવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ છે. જો બિંદુઆ $(\alpha,-\alpha),(-\alpha, \alpha)$ અને $\left(\alpha^{2}, \beta\right)$ સમરેખ હોય, તો $\beta$ =...........
$64$
$-8$
$-64$
$512$
$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$
$3$ કક્ષાવાળા નિશ્રાયકમાં પ્રથમ સ્તંભમાં બે પદોનો સરવાળો છે , બીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે અને ત્રીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે તો તેને $ n $ નિશ્રાયક માં અલગ કરવામાં આવે તો $n$ ની કિમત મેળવો.
જો $a_1,a_2,a_3,....,a_{10}$ એ સમગુણોતર શ્રેણીમાં છે કે જ્યાં $i = 1, 2,....,10$ માટે $a_i > 0$ છે અને $S$ એ $(r,k), r, k \in N$ ની જોડ પરનો ગણછે જેથી
$\left| {\begin{array}{*{20}{c}} {{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\ {{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\ {{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k}\end{array}} \right| = 0 $
તો ગણ $S$ માં રહેલા ઘટકોની સંખ્યા મેળવો.
$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$ નો અવયવ . . . .થાય.
અહી $S$ એ $\lambda$ ની બધીજ વાસ્તવિક કિમંતોનો ગણ છે કે જેથી સમીકરણો $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ સુસંગત નથી તો $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ ની કિમંત મેળવો.