यदि $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ तो $x$ का मान होगा

  • A

    $0, 2/3$

  • B

    $2/3, 11/3$

  • C

    $1/2, 1$

  • D

    $11/3, 1$

Similar Questions

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$

यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2002]

माना $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, तो

  • [IIT 1998]

यदि $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, तो $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

धनात्मक संख्यायें $x,y$ और $z $ के लिये सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ का आंकिक मान है

  • [IIT 1993]