If $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ then the values of $x$ are

  • A

    $0, 2/3$

  • B

    $2/3, 11/3$

  • C

    $1/2, 1$

  • D

    $11/3, 1$

Similar Questions

Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$

If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|,$ then $x$ is equal to

Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.

  • [JEE MAIN 2024]

The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on

Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ is-