If $p + q + r = 0 = a + b + c$, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ is

  • A

    $0$

  • B

    $pa + qb + rc$

  • C

    $1$

  • D

    None of these

Similar Questions

If the system of equations

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

has infinitely many solutions, then $(\lambda+\mu)^2+(\lambda-\mu)^2$ is equal to

  • [JEE MAIN 2023]

$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right],$ then show that $|3 A|=27|A|$.

If $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, then the value of $A $ is

  • [IIT 1982]

if $\left| \begin{gathered}
   - 6\ \ \,\,1\ \ \,\,\lambda \ \  \hfill \\
  \,0\ \ \,\,\,\,3\ \ \,\,7\ \  \hfill \\
   - 1\ \ \,\,0\ \ \,\,5\ \  \hfill \\ 
\end{gathered}  \right| = 5948 $, then $\lambda $  is

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then