Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.

  • A

    $\mp 5$

  • B

    $\mp 2$

  • C

    $\mp 7$

  • D

    $\mp 9$

Similar Questions

Number of values of $m$ for which the lines $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ are concurrent, are

The number of integers $x$ satisfying $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ is equal to

  • [KVPY 2019]

Let $S$ be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

has no solution. Then the set $S$

  • [JEE MAIN 2020]

If the system of equations $x - ky - z = 0$, $kx - y - z = 0$ and $x + y - z = 0$ has a non zero solution, then the possible value of k are

  • [IIT 2000]

If $a\, -\, 2b + c = 1$ , then value of $\left| {\begin{array}{*{20}{c}}
  {x + 1}&{x + 2}&{x + a} \\ 
  {x + 2}&{x + 3}&{x + b} \\ 
  {x + 3}&{x + 4}&{x + c} 
\end{array}} \right|$ is