For how many diff erent values of $a$ does the following system have at least two distinct solutions?
$a x+y=0$
$x+(a+10) y=0$
$0$
$1$
$2$
Infinitely many
Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by
$x + ky = 1$ ; $kx + y = 2$; $x + y = k$ are consistent then $k_1^2 + k_2^2$ is equal to
Let $p$ and $p+2$ be prime numbers and let $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ Then the sum of the maximum values of $\alpha$ and $\beta$, such that $p ^{\alpha}$ and $( p +2)^{\beta}$ divide $\Delta$, is $........$
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to
The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$ is divided by $5$ is
The number of values of $k $ for which the system of equations $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ has infinitely many solutions, is