જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$ તો $x =$

  • A

    $1, 9$

  • B

    $-1, 9$

  • C

    $-1, -9$

  • D

    $1, -9$

Similar Questions

જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને  $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.

જો $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ તો ક્રમયુકત જોડ $\left( {A,B} \right) = $. . . . .

  • [JEE MAIN 2018]

જો $a,b,c$ અને $d$ એ સંકર સંખ્યા હોય , તો નિશ્રાયક $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$ એ. . . .. પર આધારિત છે.

સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?

  • [JEE MAIN 2024]

નિશ્ચાયક $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$ નું મૂલ્ય મેળવો.