If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$, then $ x =$

  • A

    $1, 9$

  • B

    $-1, 9$

  • C

    $-1, -9$

  • D

    $1, -9$

Similar Questions

If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is

  • [JEE MAIN 2013]

The number of values of $\alpha$ for which the system of equations:   $x+y+z=\alpha$ ;  $\alpha x+2 \alpha y+3 z=-1$ ;  $x+3 \alpha y+5 z=4$    is inconsistent, is

  • [JEE MAIN 2022]

$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $

If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is

  • [AIEEE 2002]

Evaluate the determinants

$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$