If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then the value of ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ will be
$(n + 2){2^{n - 1}}$
$(n + 1){2^n}$
$(n + 1){2^{n - 1}}$
$(n + 2){2^n}$
The sum of the series $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ is where $Cr's$ denotes combinatorial coefficient in the expansion of $(1 + x)^n, n \in N$
The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is
Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then
The value of $\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right)$
Coefficients of ${x^r}[0 \le r \le (n - 1)]$ in the expansion of ${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$