यदि $^n{P_r}$ $= 720$.$^n{C_r},$ तब $r$ का मान होगा
$6$
$5$
$4$
$7$
कथन$-1:$ $10$ एक जैसी गैंदों का $4$ विभिन्न बक्सों में बांटने के तरीकों की संख्या ताकि कोई बर्स्सा खाली न हो, ${ }^{9} C_{3}$ है।
कथन$-2:$ $9$ विभिन्न स्थानों में से $3$ स्थान चुने जाने के तरीकों की संख्या ${ }^{9} C_{3}$ है।
$20$ एक रूपए के सिक्कों, $10$ पचास पैसे के सिक्कों, तथा $7$ बीस पैसे के सिक्कों, में से $6$ सिक्कों के चयन की प्रक्रिया कितने प्रकार से की जा सकती है
$^n{C_r}{ + ^{n - 1}}{C_r} + ......{ + ^r}{C_r}$ =
छः अंकों वाली सभी संख्याओं की कुल संख्या जिनमें केवल तथा सभी पाँच अंक $1,3,5,7$ और 9 ही हों,
यदि $^{20}{C_{n + 2}}{ = ^n}{C_{16}}$ हो, तब $n$ का मान होगा