If $x$ is real, then the value of $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ does not lie between
$-9$ and $-5$
$-5$ and $9$
$0$ and $9$
$5$ and $9$
Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........
The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is
The roots of the equation ${x^4} - 2{x^3} + x = 380$ are
If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be
Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then