The roots of the equation ${x^4} - 2{x^3} + x = 380$ are
$5, - 4,\frac{{1 \pm 5\sqrt { - 3} }}{2}$
$ - 5,4, - \frac{{1 \pm 5\sqrt - 3}}{2}$
$5,4,\frac{{ - 1 \pm 5\sqrt - 3}}{2}$
$ - 5, - 4,\frac{{1 \pm 5\sqrt - 3}}{2}$
Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .
The number of solutions of the equation $x ^2+ y ^2= a ^2+ b ^2+ c ^2$. where $x , y , a , b , c$ are all prime numbers, is
Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................
If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then