If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be

  • A

    $ - \frac{1}{2}$

  • B

    $0$

  • C

    $\frac{1}{4}$

  • D

    $\frac{1}{2}$

Similar Questions

The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is

  • [KVPY 2014]

If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]

Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha  + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is

In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has

  • [KVPY 2012]