यदि $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ समान्तर श्रेणी के क्रमागत पद हों, तो ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ होंगे

  • A

    गुणोत्तर श्रेणी में

  • B

    समान्तर श्रेणी में

  • C

    हरात्मक श्रेणी में

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $a _1, a _2, a _3 \ldots$ व $b _1, b _2, b _3 \ldots$ समान्तर श्रेणी में हैं तथा $a _1=2, a _{10}=3, a _1 b _1=1= a _{10} b _{10}$ है, तो $a _4 b _4$ बराबर है

  • [JEE MAIN 2022]

यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है

  • [JEE MAIN 2020]

माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है

  • [IIT 2015]

मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है:

  • [KVPY 2020]

क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद  ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है