यदि $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ समान्तर श्रेणी में हैं, तो

  • A

    $p,\;,q,\;r$ समान्तर श्रेणी में होंगे

  • B

    ${p^2},\;{q^2},\;{r^2}$ समान्तर श्रेणी में होंगे

  • C

    $\frac{1}{p},\;\frac{1}{q},\;\frac{1}{r}$ समान्तर श्रेणी में होंगे

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $x=\sum_{n=0}^{\infty} a^n, y=\sum_{n=0}^{\infty} b^n, z=\sum_{n=0}^{\infty} c^n$ है, जहां $a , b , c$ समान्तर श्रेणी में है और $| a |<1,| b | < 1$, $| c | < 1, abc \neq 0$ है तब

  • [JEE MAIN 2022]

माना कि किसी समांतर श्रेणी के $n, 2 n,$ तथा $3 n$ पदों का योगफल क्रमशः $S _{1}, S _{2}$ तथा $S _{3}$ है तो दिखाइए कि $S _{3}=3\left( S _{2}- S _{1}\right)$

यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -

  • [JEE MAIN 2020]

एक बहुभुज के दो क्रमिक अंतःकोणों का अंतर $5^{0}$ है। यदि सबसे छोटा कोण $120^{\circ}$ हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।

श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है