If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$x+i y=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}=\frac{a^{2}-b^{2}+2 a b i}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i$

So that, $x-i y=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}-\frac{2 a b}{a^{2}+b^{2}} i$

Therefore,

$x^{2}+y^{2}=(x+i y)(x-i y)=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$

Similar Questions

Given $z$ is a complex number such that  $|z| < 2,$ then the maximum value of $|iz + 6 -8i|$ is equal to-

If $z_1, z_2, z_3$ $\in$  $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is

Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.

 Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.

Let $z$ be a complex number. Then the angle between vectors $z$ and $ - iz$ is