જો $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ અને $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$,હોય, તો $\frac{a}{\alpha-a}+\frac{b}{\beta-b}+\frac{\gamma}{\gamma-c}$ .........................
$2$
$3$
$0$
$1$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
ધારો કે $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ અને $|2 A|^3=2^{21}$ છે જ્યાં $\alpha, \beta \in Z$,તો $\alpha $ ની એક કિંમત ______________ છે.
અંતરાલ $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ માટે $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ ના ભિન્ન વાસ્તવિક બીજની સંખ્યા મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,તો $k$ ની કિમત મેળવો.
જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ $x + ky = 1$ ; $kx + y = 2$; $x + y = k$ એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.